Supplementary information

High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method

In the format provided by the authors and unedited

Supplementary information

for

High-yield production of mono- or few- layer transition metal dichalcogenides nanosheets by electrochemical lithium ion intercalation-based exfoliation method

Ruijie Yang^{a†}, Liang Mei^{a†}, Qingyong Zhang^{a†}, Yingying Fan^a, Hyeon Suk Shin^{b*}, Damien Voiry^{c*}, Zhiyuan Zeng^{a*}

^aDepartment of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.

^bDepartment of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 612022, South Korea.

^cInstitut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier.

Corresponding authors:

Dr. Z.Y. Zeng (E-mail: <u>zhiyzeng@cityu.edu.hk;</u> Tel. Number: +852-34422318; Lab Website: https://www.zeng-lab.com).

Dr. D. Voiry (E-mail: <u>damien.voiry@umontpellier.fr;</u> Tel. Number: +33-467-61-9115; Lab Website: https://lowdimensional-materials.net).

Prof. H.S. Shin (E-mail: <u>shin@unist.ac.kr</u>; Tel. Number: +82-52-217-2311; Lab Website: <u>http://lnn.unist.ac.kr</u>).

[†] Ruijie Yang, Liang Mei, and Qingyong Zhang contributed equally to this work.

Supplementary Figure 1 Galvanostatic discharge curve for (a) MoS₂, (b) WS₂, (c) TiS₂,
(d) TaS₂, (e) BN, (f) NbSe₂. Adapted with permission from ref. ¹⁻³.

Supplementary Figure 2 (a) Photographs of the exfoliated MoS_2 nanosheets, which were not fully exfoliated, and some of the bulk particles can be clearly seen. (b) Unsatisfactory AFM image of the exfoliated MoS_2 nanosheets, in which lots of particles are observed.

Supplementary Figure 3 (a) TEM image of the exfoliated ZrS_2 nanosheets. (b) AFM image of the exfoliated ZrS_2 nanosheets, showing the average thickness of ~0.9 nm. (c) TEM image of the exfoliated graphene nanosheets. (d) AFM image of the exfoliated graphene nanosheets, showing the average thickness of ~1.0 nm. (e) SEM image of the exfoliated WSe₂ nanosheets. (f) AFM image of the exfoliated WSe₂ nanosheets, showing the average of the exfoliated WSe₂ nanosheets, showing the average thickness of ~2.7 nm. (g) SEM image of the exfoliated Sb₂Se₃ nanosheets. (h) SEM image of the exfoliated Bi₂Se₃ nanosheets. Adapted with permission from ref. ^{1,2}.

Supplementary Figure 4 SEM images of (a) bulk MoS₂, (b) bulk WS₂, (c) bulk TiS₂,(d) bulk TaS₂, (e) bulk BN, (f) bulk NbSe₂.

Supplementary Figure 5 SEM images of the exfoliated (a) MoS_2 , (b) WS_2 , (c) TiS_2 , (d) TaS_2 , (e) BN, (f) NbSe₂ nanosheets. Note that TMDs nanosheets shows the darker contrast in comparison with SiO₂ substrate since the conductivity of TMDs nanosheet are better than SiO₂ substrate, while BN shows white or lighter contrast.

Supplementary Figure 6 SEM images of the large area TMDs nanosheets deposited on Si/SiO₂ substrate: (a, b) MoS₂, (c, d) TiS₂, (e, f) TaS₂ nanosheets. Note that TMDs nanosheets shows the darker contrast in comparison with SiO₂ substrate since the conductivity of TMD nanosheets are better than SiO₂ substrate.

Supplementary Figure 7 EDS of the exfoliated MoS_2 (a), WS_2 (b), TiS_2 (c), TaS_2 (d) nanosheets deposited on Si/SiO_2 substrate.

Supplementary Figure 8 Photoluminescence spectrum of a single-layer MoS_2 nanosheet deposited on Si/SiO₂ substrate. After the nanosheet was annealed at 450 oC in Ar gas for 2 h, it was excited with 488 nm laser in air at room temperature to give the PL spectrum. Adapted with permission from ref. ¹.

Supplementary Figure 9 Temperature-dependent Seebeck coefficient (a), electrical conductivity (b) and powder factor (c) for NbSe₂ nanosheet and bulk material. Adapted with permission from ref. ².

Supplementary Table 1 The molecular weights of different layered compounds, and the corresponding discharge capacities as lithium-ion batteries with one lithium ion intercalated, i.e., LiMN.

Layered compound	Molecular weight (g∙mol ⁻¹)	Capacity(1 Li) = LiMN (mAh·g ⁻¹)	
MoS ₂	160	167.2	
WS_2	248	107.9	
TiS ₂	112	238.9	
TaS_2	245	109.2	
ZrS_2	155	172.5	
Graphite	12	2229.6	
BN	25	1070.2	
NbSe ₂	251	106.6	

Supplementary Table 2 Summary of the characteristics of the exfoliated 2D materials in this protocol.

Materials	MoS ₂	WS_2	TiS ₂	TaS_2	BN	NbSe ₂
Thickness	10102	1.0	16102	0.0 ± 0.1	4.0	2.4
(nm)	1.0 ± 0.2	1.0	1.0 ± 0.2	0.9 ± 0.1	4.0	2.4
Lateral						
dimensions	0.3-3.0	0.4-1.0	0.3-3.0	0.3-3.0	1.0	1.0
(µm)						
Yield	92%	-	93%	93%	-	-

Supplementary References

- Zeng, Z. *et al.* Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. *Angewandte Chemie International Edition* 50, 11093-11097, doi:10.1002/anie.201106004 (2011).
- Zeng, Z. *et al.* An Effective Method for the Fabrication of Few-Layer-Thick Inorganic Nanosheets. *Angewandte Chemie International Edition* 51, 9052-9056, doi:<u>https://doi.org/10.1002/anie.201204208</u> (2012).
- 3 Zeng, Z., Tan, C., Huang, X., Bao, S. & Zhang, H. Growth of noble metal nanoparticles on single-layer TiS₂ and TaS₂ nanosheets for hydrogen evolution reaction. *Energy & Environmental Science* 7, 797-803, doi:10.1039/C3EE42620C (2014).